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An investigation is carried out into the structure of the laminar boundary layer 
originating from the forward stagnation point of a prolate spheroid a t  incidence in a 
uniform stream, assuming that the external velocity distribution is given by attached 
potential theory. The principal new results of the study are: 

(i) A new transformation of the body co-ordinates is devised which facilitates the 
computation of the solution near the nose. 

(ii) Two variations of the standard box method of solving the equations are devised 
to enable solutions to be computed in regions of cross-flow reversal. They are referred 
to as the zigzag box and the characteristic box. 

(iii) Whereas in two-dimensional flows the effect of the boundary layer approaching 
separation on the external flow may be represented by a blowing velocity, in the present 
study we find that this is only true near the windward line of symmetry. Near the 
leeward line of symmetry the blowing velocity must be replaced by a suction velocity 
even though the boundary layer is being significantly thickened. 

(iv) The boundary layer over the whole of the spheroid cannot be computed in an 
integration from the forward stagnation point. The accessible region is largely bounded 
by the separation line, if a < 6", and develops a wedge-like shape whose apex is named 
the acoessibility ok, pointing towards the nose of the spheroid. On the windward side 
of this line the solution develops a singularity; on the leeward side the situation is less 
clear but it is also believed to occur there. 

(v) For 01 2 16" the accessible region on the leeward side of the ok is largely deter- 
mined by the external streamline through the ok. 

1. Introduction 
The determination of the three-dimensional boundary layer on a body when subject 

to a prescribed pressure gradient has attracted much interest during the last twenty 
years since the general principles which must govern any sound numerical approach 
were laid down by Raetz (1957). These follow from the realization that the momentum 
equations are diffusive in the direction normal to the body and wave-like in planes 
parallel to the body, the direction of propagation being along the local stream direction. 
Since in general this direction varies across the boundary layer i t  is possible to identify 
zones of influence and of dependence for any point P of the boundary layer, each being 
a curvilinear wedge with generators composed of normals to the body and having the 
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normal through P as vertex line. The computation of the boundary-layer properties a t  
P must, in some sense, make use of its properties at  all points in the zone of influence 
on P. The same remark applies to two-dimensional boundary layers: the zone of 
dependence now reduces to a plane. The complication in three-dimensional flow is 
that this zone can be very broad, especially near separation, where the skin-friction 
direction may be inclined at  an obtuse angle to the main stream and even worse situa- 
tions may occur. Beyond separation the zone of dependence in two dimensions is a 
plane extending both upstream and downstream in terms of the mainstream while, in 
three dimensions, it might extend in all directions, at least near P. 

The concept of separation and its relation to that of accessibility is of some subtlety 
and requires careful consideration. The problems which can arise have been extensively 
studied, notably by Maskell (1955), Lighthill (1963) and Wang (1976), the last of whom 
also gives a well-balanced review of previous work. Accessibility is defined as follows. 
A point P of the boundary layer is said to be accessible from the forward stagnation 
point 0 if the velocity field a t  P can be computed in terms of the initial conditions a t  0 
and the boundary conditions on the body and in the external stream. The boundary 
of this region consists of the normals to the body through a curve lA on the body, lA 
being often closed and encircling 0 but potentially extending to infinity. Separation is 
a line 1, drawn on the body which forms the boundary of all limiting streamlines 
emanating from 0. If 1, is closed, the normals to it bound the region of accessibility but 
to identify 1, and la requires additional arguments, although Wang (1976) noted a 
general agreement that it is always the case. Later on, however, we shall demonstrate 
that important exceptions can occur. 

It has been argued that 1, is a limiting streamline, i.e. a skin-friction line, passing 
through isolated singular points of the solution (Lighthill 1963) or is an envelope of 
limiting streamlines (Maskell 1955). There is a significant difference between the nature 
of the boundary-layer solution according to which option occurs. For, if it  is an envelope, 
the skin-friction component in a direction perpendicular to 1, must have an algebraic 
singularity at 1, with index probably equal to +. Further, the displacement thickness is 
also singular at  1, and so the solution terminates at  I,. On the other hand if 1, is a skin- 
friction line then it is possible for the solution to be smooth at  1, and so be continued 
beyond the region of accessibility from the forward stagnation point, although, to be 
sure, additional information must then be supplied to specify it uniquely. Now in real 
flows one can reasonably expect that the pressure gradient adjusts near 1, to prevent 
the singularity- otherwise a contradiction might well occur since the corresponding 
singularity in the displacement thickness provokes a singularity in the pressure 
gradient, forcing, in turn, separation to occur earlier. This argument has already been 
extensively used in two-dimensional flows culminating in the Sychev-Smith theory of 
separation on a circular cylinder and other smooth bodies (Sychev 1967, 1972; Smith 
1977a, 1979) in which the flow field is regular as the skin friction changes sign. It is 
noted that some studies of the analogous triple-deck theory in three-dimensional flows 
have already been made (Burggraf 1978, private communication; Smith, Sykes & 
Brighton 1977; Sykes 1980) and the flow near separation is again regular. Now there 
are many photographs available of three-dimensional separation; Wang (1976) has 
included a selection in his review, for example, and Han & Pate1 (1979) have published 
some for laminar flows past spheroids. These strongly suggest that 1, is an envelope, 
but for the above reason we are reluctant to accept that this is really the case and are 
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of the opinion that a more detailed study would show it to be a skin-friction line as 
Lighthill suggested. 

There have been a number of careful calculations of three-dimensional boundary 
layers in the past, particularly by Wang (1970,1972,1974~, b, c, 1975) and by Cebeci 
et al. (1973) and Cebeci, Hirsh & Kaups (1976), but for all the computation of the 
separation line 1, has proved difficult, if not impossible. The most successful are due to 
Wang for boundary layers on a prolate spheroid at incidence; but even he waa not able 
to comment usefully on the nature of the solution near separation, and the computation 
on the leeward side of the body proved very difficult. He took careful note of the zones 
of dependence in formulating his numerical algorithm and used an implicit finite- 
difference method based on the Crank-Nicholson scheme. For an angle of attack 
a = 30" he concluded that the closed separation line I,, which we have already discussed 
at length, is replaced by an open separation line I, ,  which starts about 10 yo of the way 
to the back of the body and about 140" from the windward line of symmetry, the 
limiting streamlines approaching it from both sides. He identified this with a free 
vortex-layer type of separation previously described by Maskell (1955). Another 
possible type of separation on smooth bodies, first identified by Howarth (1951 a), is a 
collision between two boundary layers originating from different parts of the flow field, 
but for a long time such a phenomenon was regarded as exceptional. Recently, 
however, a number of additional studies have been reported (see Stewartson, Cebeci 
& Chang 1980, for example) and it seems worth while to bear it in mind as a possible 
termination of the calculatione. The novel feature is that the forward calculation 
of the one boundary layer develops unexceptionally until it collides with the other, 
the exact position of the collision being determined by mechanisms which are not yet 
clear but which probably depend on balancing the forward momentum in each of the 
boundary layers. 

This discussion indicates that understanding of these boundary layers, even when 
the pressure gradient is prescribed, is still incomplete. Our aim in this paper is partly 
to offer an alternative numerical method which will, it is hoped, enable us to carry the 
integration further towards 1, and clarify some of the outstanding issues. In  addition 
we have some new goals. 

It is well known that in problems of engineering interest most of the boundary 
layer is turbulent, transition occurring near the nose of the body at high angles of 
incidence. In order to study these flows we first need an accurate method of computing 
the laminar flow in this neighbourhood. The method used by Wang (1976) has limita- 
tions here because he does not choose to remove the singularities in the metric para- 
meters at  the nose and, while the use of co-ordinates based on properties of the imposed 
mainstream formally removes them (Geissler 1975), they lead to additional difficulties 
(Cebeci et al. 1973). Recently Cebeci, Khattab & Stewartson (1980) have devised a set 
of body co-ordinates with respect to which the governing equations are regular every- 
where upstream of lA. Here we shall use that system of co-ordinates and, indeed, make 
a further transformation to convert the formal computation of the flow near the nose 
into a straightforward numerical problem, so that we shall later be in a strong position 
to examine the stability of the laminar boundary layer. 

Second we wish to have a method easily adaptable to the integration of turbulent 
boundary layers. For such flows it is known that a variable mesh normal to the body 
is desirable, to cope with its characteristic double-structured form. A generalization 
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of the Cebeci-Smith eddy-viscosity model (Cebeci & Bradshaw 1977) has quite good 
prospects for providing an adequate description of such flows and the corresponding 
equations have close similarities to those for laminar flow. This requirement can be met 
by using the Keller-box method (Cebeci & Bradshaw) in which the governing equations 
are reduced to five first-order finite-difference equations in terms of variables defined 
either at  the corners or the centres of the sides of the box t o  give a second-order-accurate 
solution at  the centre of the box. These boxes are now stacked one on top of the other 
with one set of edges along the normals to the surface. The nonlinear difference 
equations are linearized by using Newton's method and then solved by a standard 
procedure to give the values of the five dependent variables on the fourth normal in 
terms of the other three. In  this way the solution can be advanced from either the 
windward or leeward line of symmetry, where it can be found independently 
downstream from the nose. We shall refer to this method as the standard box. 

A deficiency in the standard box is that it ignores Raetz's principle of the zone of 
dependence and so the user is not surprised that it eventually breaks down as separation 
is approached, and particularly after the circumferential skin-friction has changed 
sign. Two modifications are then brought into use. First Krause, Hirschel & Bothmann 
(1968) suggested that a zigzag scheme might be helpful in this situation: in an inte- 
gration advancing from the windward line of symmetry this amounts to  replacing one 
of the edges of the box on the upstream (and known) side by the next edge further to 
leeward. We investigate its usefulness here, referring to the modification as the zigzag 
box, first used by Cebeci (1979) for unsteady flows. 

However, this approach does not entirely mimic the wave-like character of the 
momentum equations. For this the box should be replaced more appropriately by a 
curvilinear surface consisting of the (projections of the) streamlines on planes parallel 
to the surface passing through the normal edge along which we wish to compute the 
values of the dependent variables. For this purpose we use a new numerical algorithm 
developed by Cebeci & Stewartson (1 977, unpublished), which incorporates this require- 
ment: we shall refer to it subsequently as the characteristic box, thus acknowledging 
that the streamlines are characteristics of the momentum equations. 

With these schemes a t  our disposal we integrate the boundary-layer equations for a 
prolate spheroid for a thickness ratio t = a, set a t  an angle of incidence a to an oncoming 
stream, where a = 3", 6", 15", 30", taking theimposedpressuregradient tobethatgiven 
by classical potential theory. In  parenthesis we note that the experimental pressure 
variations agree closely with this theory except, significantly, near separation (Pate1 & 
Choi 1979; Meier & Kreplin 1979). We find no difficulty in determining the solution 
near the nose and up to the line of cross-skin friction reversal using the standard box. 
Further downstream, both the zigzag box and the characteristic box were used and 
both found to be effective, particularly on the leeward side, where there is an extended 
region before separation occurs; it appears that the characteristic box is the more 
accurate, and so in the final presentation of results it is preferred. 

The most complete of the earlier studies of the flow fields is for a = 6", due to Wang 
(1975), who concludes that it may be computed as far as the separation line I,, which 
has the shape of a tongue halfway between the windward line of symmetry 1, and the 
leeward 1 and extends significantly towards the nose. Our results indicate the same 
general trends, but the tongue is much more pronounced and takes on a wedge-like 
character, which we shall refer to as an ok (literally 'arrow ', Turkish). The boundary 
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of the region of accessibility, defined by the curve lA,  thus largely coincides with 1, when 
a = 6'. In  addition we are able to carry the computation near enough to this line on 
the windward side to provide convincing evidence that the solution develops a 
singularity there, probably of the type described by Brown (1965). In  contrast to 
Wang's results we find that the circumferential skin friction does not vanish on l,, 
nor does the tangential component along 1,. On the leeward side we find marked 
quantitative differences in the magnitude of the skin friction near 1, and indeed in the 
position of 1,. However, the leeward portion of 1, cannot be fixed so definitely as the 
windward side since we are unable to reproduce the Brown singularity at all; neverthe- 
less we are fairly confident that the position of 1, inferred from our computations is 
close to being correct. 

At a = 15" the identification between lA and 1, is only possible on the windward side. 
The form of 1, is similar to that for a = 6" except that it originates at 5 + - 0-4 and in 
particular the solution is clearly singular there. On the lee side, however, ZA is deter- 
mined by the external streamline passing above the most forward point of the wind- 
ward separation line. The reason is that downstream of this line the solution in the 
outer part of the boundary layer is historically dependent on flow properties along 
streamlines which have passed over the windward line of separation and these pro- 
perties are not fully known. Thus an ok also forms in lA when a = 1 5 O ,  but for a 
different reason, and now there is 1u) possibility of an accurate determination of the 
leeside shape of 1, with the boundary values and initial conditions supplied. In  fact 
the concept of separation is strictly meaningless here and the notion of open separation 
introduced by Wang (1975) is irrelevant, although no doubt important in many 
practical flows. Similar remarks apply to the solution when a = 30". 

An important aspect of the boundary layer is the role it plays in correcting the 
external velocity. In two-dimensional studies, this may be interpreted as an injection 
velocity from the body into the inviscid stream, especially near separation. The 
corresponding result for the three-dimensional boundary layers under investigation 
here is the same over the majority of the flow field computed, but near 1 beyond the 
reversal of circumferential velocity the injection velocity is replaced by a suction 
velocity. Although this unexpected result may easily be inferred from previous studies, 
it  does not seem to have been noted. There is a tendency for the boundary layer to 
thicken in this region but nevertheless its effect on this equivalent injection velocity is 
the opposite to that expected. 

2. Formulation 
The studies in this paper extend those of Cebeci et al. (1980) and we shall largely 

follow their notation and formulation. The governing boundary-layer equations for an 
incompressible laminar flow in a curvilinear orthogonal co-ordinate system appro- 
priate to a prolate spheroid at incidence (figure 1) are: 

continuity: 
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FIGURE 1. Notation for prolate spheroid at incidence. 

Here (u, w) are the velocity components parallel to the body surface and in, respec- 
tively, the meridional and azimuthal directions, while w is the component normal to 
this surface. Further h,, ah, are metric coefficients, where h, and h, are defined by 

t denotes the thickness ratio ( = b/a)  of the elliptic profile and 
K,/a is the geodesic curvature of the surface lines E = constant with K ,  given by 

= x/a. The parameter 

tE K -  - h, h,( 1 - t2)4' 

The solution of the system (1)-(5) requires boundary and initial conditions. The 
boundary conditions are: 

I u = v = w = 0, y = 0, 

u --f u,(x, 8), w + w,(x, O ) ,  y -f 03. 

The velocity components u, and we can be obtained from inviscid theory (Hirsh & 
Cebeci 1977), being given by 

ue/u, = &(t) cos a cos /3 - Vso(t) sin a sin /3 cos 8, (7a) 

wJu, = Go(t) sin a sin 8. (7b) 

Here /3 denotes the angle between the line tangent to the elliptic profile and the 
positive-E axis: it is given by 

( 1 - E2)t 
[l + &-2(t2- l)]t' 

cosp = 

The parameters G(t)  and G,,(t) are functions o f t ,  defined by 

As formulated, the governing equations are singular at  the nose (4 = - 1) and this 
may be removed, as explained in Cebeci et al. (1980), by the following transformation. 
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We define new velocity components U ,  W ,  V by 

u = UcosO+ WsinB, w = WcosB- UsinB, tv = V (10) 

X = ScosB, Z = SsinB, t Y  = y ,  (11) 

and new co-ordinates X ,  Y ,  Z by 

dS [1+E2(t2-1)]6- hldx 
t(1-52) @=--. 

-- 
S -  h2 

where 

Then (1)-(3) reduce to 

W Z )  = 0, 

au a2u + L W ( W X - U Z ) + V - = B l + ~ -  
ay a ~ 2 )  

aw a2w 

where Dl and B2 are pressure-gradient parameters defined by 

and 

This new set of equations (lo)-( 17) is free of any singularities at  the nose and more- 
over takes on a well-behaved form as t +- 0; thus it is formally well suited to initiate 
the computation on thin prolate spheroids, or indeed any other shapes provided they 
have paraboloidal noses. The corresponding boundary conditions are 

u = v = w = u = V = W = O  when y = y = o  (18a) 

and u+-u,, w +  we, U --f U,, W + -  W, as y ,  Y +-GO, (18b)  
where u,, we, U,, W,  are related by formulae equivalent to (10). Initial conditions are 
also imposed at the stagnation point So, defined from (7) by 

(19) 

and are u = w = o ,  Y 2 0 .  (20) 

B = 0, 6 = -I#) [V;(t) +t2Vio(t) tanzal-t E E,, 

In  the neighbourhood of this point, which we define to be (X,,O) in the ( X , Z )  co- 
ordinate system, we may write 

u = (X-X,) O(Y),  w = Z V ( Y ) ,  v = P ( Y )  (21) 

and then 0, r satisfy 

dU d 2 0  d V  d2W 
dY dY ’ dY dy2 ’ 

N V 2 + V - = P : * + v -  NU2+V-=P;C*+v-  

dV 
dY 

N(O-kr )+-  = 0, 
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where p:* = iv(au,/axy, p:* = iv(aK/az)2 (23) 

are evaluated at  (Xo,  0). These stagnation-flow equations are a special case of Howarth’s 
(1 951 b) equations. 

While it is true that one may now proceed to solve this new form of the three- 
dimensional boundary-layer equations from the forward stagnation point past the 
nose and as far downstream as lA,  there are still some awkward features about initiating 
the calculations; these may be avoided by means of yet another transformation. Since 
the final form of the equations is so convenient for the computer it was decided to make 
use of them in spite of the slightly more complicated algebraic structure. The strategy 
underlying our thinking is as follows. The standard-box method depends for its success 
on knowing the solution on three of the four normals in which the boxes are stacked a t  
each stage. In  the formulation (10)-(17) we can determine the solution on 2 = 0 
(Cebeci et al. 1980; Wang 1970), but how can we find the solution on the first normal 
of the first station, say X = 0, 2 = k, off the windward line of symmetry? Of course, 
once we have this, the standard box is well suited to finding the solution at  all the 
normals standing on the line 2 = k, but a special method is needed to get the first 
solution. However, since we have the solution on the line of symmetry, we could use 
this provided we changed to polar co-ordinates (R*, #*) centred at  So and advance 
the solution from R* = 0 using the box method to carry us from q5* = 0 to $* = n at 
each new station of R*. There is another point. Once we get away from the neighbour- 
hood of the nose the disadvantages of the original system (1)-(6) disappear and its 
simplicity both in formulation and geometric interpretation are compelling reasons 
for basing our solution on it. Thus we need a transformation which converts the polar 
co-ordinates centred at So to the ‘polar co-ordinates’ (c + 1 , O )  centred at the nose 
within an acceptably small distance from it. 

There are many ways of achieving these aims and we choose here to use the theory 
of coaxial circles. We write 

X = X,+(n2-1)X,R(R+cosq5)A, 2 = (n2-1)X0RAsin#, P4a)  

where A = ( ~ + ~ R C O S Q S + R ~ ) - ~  (24b) 

and n( > 1) is an arbitrary parameter; later on we shall set n = 2. Other values of n 
may well be more convenient in special circumstances. Then when R Q 1 

X = Xo+Xo(nZ-1)Rcosq5+O(R2),  2 = Xo(n2-1)Rsin#+O(R2), (25) 

80 that R, $ are polar co-ordinates based on So, while when R = n-l 

X = nX, cos 8, 2 = nX, sin 8, (26) 

where tan &9 = (n - 1) (n + 1)-1 tan $#, 

which returns us to the co-ordinate system of (1)-(6). Henceforth we shall take n = 2 
but the generalization to arbitrary n is quite straightforward. Define 

U = R&(R,#,Y){cos#(l+R2)+2R}A -RT(R,#,Y)(1-R2)sin2#A (27a) 

and W = RA( 1 - R2) sin $&+ RA[cos $( 1 + R2) + 2R] T sin $, (27b) 
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so that, when R = 4, Q and T sin $ may be identified with u and w. Then the equations 
satisfied by Q, T, V are: 

(a) Continuity: 

1 aT 
[.$+sin $- +A[cos $( 1 + R2) + 2R] T + 2AQ( 1 + Rcos $) 

av 3XoA a$ 
-L(S)[UX+sin2q5$&] = 0. (28) 

(b) R-momentum : 

8 [.gg + sin $T - aQ + Q2 + 2R A sin2 $QT - (1 - R2) A sin2 $TI] 

1 

aR 

+L(S)sin2$T(+X- Ui)+ V- aQ = v-+P$(R,$). a2Q (29) ay ay2 

( c )  $-momentum : 

aT 

-L(S)Q(WX-U&)+ V s  = vC2+&(RJ$) .  (30) 

zL [RQg+ sin $T- + cos $T2+ 2A( 1 + R cos $) QT - 2ARQ2 

h aT a2T 
a$ 

A 

Here Wsin$= W and Z=&sinq5 (31) 

and b$, /3,f are pressure gradient terms, not reproduced here, but which may easily be 
written down in terms of the mainstream values Q,, T, of Q, T, and these follow at once 
from the values of V,, F!: using (27). The point of the relationship in (31) is that now the 
lines-of-symmetry equations ca? be written down at once from (28)-(30) on setting 
9 = 0,n and remembering that W , 2 are finite. Thus the values of Q, T on 9 = 0, n can 
be computed separately, and in essence have been (Cebeci et al. 1980), independently 
of the solution in 0 c $ c n. Further, Q and T are known at R = 0 for 0 c $ c 7c from 
the solution of the stagnation equations (2.21)-(2.23): 

Q(O,+, Y) = 3X0[w( Y) sin2 $ - o( Y) cos2 $1; 
T(O,$, Y) = ~ X ~ C O S $ [ ~ ( Y ) + W ( Y ) ] .  

(32) 

When we combine these known solutions at R = 0 and 0 < $ c n, at $ = 0 and R > 0, 
and at  $ = nand R > 0, with the boundary conditions at y = 0 as as y+m, it is clear 
that, in spite of the more complicated form of (28)-(30), a numerically attractive 
formulation of the original problem has been achieved. We may now use the box method 
to compute the solution systematically along lines of constant R, starting from R = 0 
and increasing $ from 0 to 7c at each new station of R. Further the new form of the 
equations is well suited for the numerical schemes proposed by Wang ( 1974a, b, c, 1975). 

Before embarking on the numerical solution it is convenient to remove urn, v from 
the equations by making appropriate scale transformations, but to save further 
complications in notation we shall simply set urn = v = 1 from now on. 

1 

3. The numerical procedure 
The standard-box method for solving the governing equations may be illustrated by 

considering them in their original form, which we use for calculating the flow field when 
S > 2X0 or, more strictly, its equivalent in terms of 6, conveniently defined as 6 > 5. 
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E (i) 

t+ r, -4 
FIGURE 2. Finite-difference molecule for the standard box. 

Difficulties can arise with this formulation when a is small because the convenient 
step length in terms of r ]  is much larger than that in terms of Y used when E -= g. To 
avoid this problem Y may be used as variable until say E = 0, when a further switch to 
r] could be made. The equations are reorganized by writing 

The equation of continuity may now be integrated to give 

v = s4 - r ] f - e  
(is 

and the momentum equations reduce to 

p’+sB,+spe-sK2g2 = s (g --+-- :,:i)’ 
q ’ + s ~ , + s q e + s K ,  f g  = s (34 f  1 

where PI, BZ are dimensionless pressure gradient parameters with the property that 
( 3 4 e ) ,  ( 3 4 f )  are automatically satisfied in the limit r] + co when 

f +ue, g+we, P+ 0, q + O .  

The additional boundary conditions are that 

f = g = e = O  a t  q = O .  

A three-dimensional grid is now set up in the (&0,  7) space consisting of straight 
lines in the 5,8, r] directions dividing up the domain of integration into a set of boxes. 
Let us conveniently label a particular box by (i, j, k), where the box ( 1 , 1 , 1 )  has three 
sides on the initial planes = (, r] = 0 and 8 = 0 respectively. Further let the E co- 
ordinates of the corners of the (i, j, k) box be &, &-,, where ti - ti-, = ri, the 7 co-ordi- 

and, with primes denoting differentiation with respect to 7, 
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nates be q3, vj-l, where q3 - qj-l = hi, and the 8 co-ordinates On, where 8, - = 
k, (see figure 2 for a typical box). It is noted that there is no need for any equality be- 
tween any of the different r,, hi, k,. We nowsuppose that f, g,p, q areknown a t  the mesh 
points &, qi, On-l), (&.-l, qj ,  On), (ti, qj ,  en-,) for a l l j  and wish to compute them a t  the 
mesh points (&, qj,  en). The difference approximations to (34b, c, e , f )  are written in a 
standard form (see, for example, Cebeci & Bradshaw 1977) which may be briefly 
described as follows. Equations (34 b )  are approximated using centred difference- 
quotients and averages about the mid-point (&, qj+ On), Ti-& = +(q j.-l + q j ) .  The 
difference equations which are to approximate (34c, e, f) are written about the 
mid-point (ti+, q5-+ Ok-4) of the cube. In  centring the parameters f, q,p ,  q at this 
point we use formulae of the type 

f&t = &(j?j+fj-l), Ji3 = ~(fl."+f:-'."+f:."-'+fl-'~"-'), (36) 

thus ascribing equal weight to the values off at all corners of the box. The centring of 
the fifth parameter e proceeds differently. We do not use its values a t  the corners 
of the box buC instead use those at  the mid-points of the sides q = constant. Thus by 
analogy with (36) we treat E j  as unknown and define 

Zj-4 = i ( Z j + E j - l ) .  (37) 

If at any stage of the computation we require e on the mesh points, we must interpolate 
among the tabulated values. This special treatment for e is necessary to avoid unaccep- 
table oscillations. The derivatives in (34c, e, f )  are approximated by formulae such as 

-=- af 1 [ft n - j ; - l ,n  +fj,n-1 - fi *-I, n-1 +fjL; -$-l ,n I-1 +f$A-i -1;:;. n-1 I. (38) at  4ri 

The difference equations together with the boundary condition (35) form a nonlinear 
algebraic system for the unknown quantities fjln, g$,, p;ln, qtn, Z j  (all j) which we 
linearize by Newton's method and solve the resulting linear system using the block- 
elimination method discussed in Cebeci & Bradshaw (1977). In order to start the 
computation, the values off, g,p,  q but not e are required on the planes 8 = 0 and 6 = p. 
These are provided by the windward line of symmetry solution already obtained as a 
separate and self-contained computation and by the computation for the nose region. 
In  turn the nose region can also be solved by the standard box provided we use the 
third formulation of the equations, (27)-(31), and is initiated by the stagnation-point 
solution (32). Thus we have a viable numerical procedure for the integration of the 
houndary-layer equations which we may use until it breaks down due to loss of con- 
vergence of the iteration sequence. 

The seeds for this possibility are shown in the arbitrary assumption that the inte- 
gration must proceed in the directions of 6 increasing and of 8 increasing. We note in 
parenthesis that the integration could equally well proceed in the direction of 8 
decreasing, starting from the leeward line of integration, since the solution there can 
and has also been computed separately (Cebeci et al. 1980), but this does not overcome 
the fundamentalweakness of the standard box. For the evolution of theboundary layer 
proceeds, as explained earlier, by diffusion in the q direction and by convection along 
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(a) ( b )  

FIGURE 3. Finite-difference molecule for the zigzag box when the solution procedure begins 
from (a) the windward plane, and (b) the leeward plane. In  each case x denotes known values 
and 0 those computed by the zigzag box. 

the local streamline direction, a t  the value of r ]  being considered. So long as this 
direction is roughly the same as that of the mainstream and in particular both 5 and 0 
are increasing along this streamline, the standard box should be an acceptable pro- 
cedure; the main feature that must be checked is that all the local streamlines from 
points on the lines 5 = ti, B = 0, cross the plane 6 = tjPl at points inside the boxes. If 
not, the zone of influence on this line extends outside the stacked boxes but this 
physical solution is easily removed by decreasing the values of r,, kn. 

Suppose, however, the local streamline a t  r] = vj is in the direction of 8 decreasing 
while that of the external flow is in the direction of Bincreasing. No adjustment of mesh 
lengths can remove the unphysical features of the standard box and a radical change is 
necessary. We have investigated two possibilities. The first is a development of the 
zigzag difference scheme first used by Cebeci (1979) for unsteady flows and which we 
shall refer to as the zigzag box. 

In this scheme we retain the same procedure for solving (34 b).  Suppose for definite- 
ness we have started the computation on the windward line of symmetry. Then for the 
other equations we modify the algebraic difference equations only if gt1-t < 0. We 
write (34c, e, f )  as algebraic equations centred at  P, using quantities centred at P, Q ,  
R, where 

On the other hand if the integration starts from 8 = 7~ then the standard box is 
abandoned locally only if g::! > 0. The first situation occurs near the surface r ]  = 0 and 
the second in the outer part of the boundary layer. 

The pattern of the zigzag scheme in each case may be seen from figure 3 which shows 
a section of the grid by the plane r] = ~ ~ - 4 .  

To illustrate the centring of the equations with this zigzag box let us consider a 

P = (ti-4, ~ja, en), Q = (ti, ~j-4,en-4)) R = (ti-1, qj-4, Bn-4). (39) 

- 
model equation for (34 e) 

f af g af 
h;*ag h,*ae, 

p'+spe = s--+-- 

where we have temporarily added stars to the metric functions to prevent confusion 
with the step length in the r ]  direction. The finite-difference approximation to this 



Three-dimensional laminar boundary layers 69 

i -  1 i 

FIGURE 4. Finite-difference pattern for the characteristic box. The heavy lines show the pattern 
for the zigzag scheme for the continuity equation, x denotes known quantities and 0 those 
to be computed by the chareoteristic box. 

equation for the case when the marching in the 8 direction is from windward to leeward 
is (figure 3 a ) :  

P ' (P)+(w)  (PI = p ( P ) f ( P ) z ( P ) + G ( f ' )  8 af [B,s(Q)~(Q)+(l-B,)s(R)~(R)]. af af (41) 

Here the capital letter following each group of numerical quantities indicates the point 
a t  which they are to be centred and for this purpose we use the neighbouring mesh 
points of for P and neighbouring mesh points of 8 for Q and R. Additionally 

Again we have an algebraic system of equations for finding the values of the dependent 
variables at (&, nj, 8,) (allj) which is solved by the procedure followed in the standard 
box scheme. A variation of this method has been successfully applied to the compu- 
tation of unsteady laminar boundary layers (Cebeci 1979) and we shall make use of it 
here when the crossflow velocity g changes sign across the layer. 

Although the zigzag box is a definite improvement on the standard box it still 
contains some physical weaknesses. Thus for the determination of p from (40)  at 
(&, nj,  0,) the values off, g, p, q at (ti, vj, are not directly relevant, since distur- 
bances are being carried forward along the local streamline. Of crucial importance in 
fact are the values off, 9, p, q, at (&-l, v,, O), this being the point in the plane 6 = &-l 
where it intersects the projection of the streamline through (ti, vj, 8,) on the plane 
7 = 7,. 

Following the same line of argument the attaching of equal weights to the centred 
mesh points on either side of R does not allow for the possibility that if this streamline 
passes close to one of them the other may almost be discounted. For this reason we use a 
third form of the Keller-box method which incorporatea these physical arguments and 
which we shall refer to as the charaderiatic boz (see figure 4). The method, developed by 
Cebeci & Stewartson (1977 unpublished), is usually used for a l l j  when g < 0 for a n y j  
in the calculations starting from the windward side (and vice versa from the leeward 
side) but it can be applied even if g 3 0 for all j. The standard procedure is retained for 
(34 b) and the zigzag procedure for the continuity equation (34c ) .  In order to obtain 
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the difference approximations to (34 e, f) we first write them in streamline form, that is: 

af 
W' 

p' + sP1 + spe - sK,g2 = A- 

ag q' + sP2 + sqe + sK2 fg = R- 
a$' 

( 4 3 4  

where y% is measured along the projection of the local streamline in the plane 
q = constant and 

= [ (sm72+ (s/W2Ii. (44) 

The value of 0 is found by drawing a straight line through (&, q,, 0,) in a direction equal 
to the mean of the streamline directions a t  (&-l, n,, 0) and (ti, qj ,  Ok). This necessitates 
an additional measure of iteration in the numerical scheme. The values of the relevant 
variables at ri, 0) are found by quadratic interpolation between the known values 
at  (&-l, r],, On-,), (EiPl, r],, 0,) and The equations (43) are then differenced 
at the mid-point @between (ti, vj, O k )  and (&-l, r], 0) (see figure a), and finally thevalue 
of e at is found by linear interpolation from its value at  P, where an equation to find it 
has already been written down, and the values of e at the next smallest value ofn. It is 
believed that the errors involved in this procedure are second order, i.e. the same as 
those in the standard box method. The method has already been used effectively 
in a study of laminar and turbulent boundary layers on ship hulls (Cebeci, Chang & 
Kaups 1978) as well as three-dimensional flows on wings. 

The characteristic box may also be used to extend the solution in the nose region 
away from the line of symmetry in the second form of the equations, (13)-( 15). Here 
the solution is known on 2 = 0 and it enables us to deduce the solution at Y, the first 
X station of the first grid lines adjacent to those a t  Z = 0. The computation ofe a t  \r is 
effected by extrapolation from P using its symmetry properties on 2 = 0. Having 
computed the solution at this station of X ,  those at  other stations of X follow using 
the standard box. The process is repeated at  each of the 2 grid lines. 

The characteristic box is complicated and requires more programming effort than 
either the standard or the zigzag boxes but it has a greater range of applicability than 
they or, we believe, any other method available at present. However it does havelimits; 
thus it is likely to fail if the direction of $ completely reverses in (43). This phenomenon 
seems to occur just near the leeward portion of the separation line 1, and prevents us 
from fixing its position and properties as well as we can for the windward portion of 1,. 

r],, 

4. General properties of the solution 
The computations were carried out for a = 3O, 6O, 1 5 O ,  30" and t = 4. For a = 6 O ,  the 

second form of the governing equations (13)-( 15) was used with a switch to the first 
form a t  S = 0.523 (:= - 0.975), but for all other values of a the third form was used to 
initiate the computations. The standard box was used for the integration in the ( E ,  q,0)  
variables until the crossflow velocity changed sign and generally the characteristic 
box was used subsequently. A number of studies were made with the zigzag box at 
a = 6"; it was concluded that this variation is less sensitive to the structural properties 
of the boundary layer and it was discarded. For example, in the integrations from the 
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leeward line of symmetry 1, the method broke down a t  5 = 0-44 as against 6 = 0.35 
with the characteristic box. One the ot,her hand, integrations from the windward line 
of symmetry 1, broke down at < = 0.31 using either method.Various experiments were 
made with the step lengths: in the < direction ri vaned from 0.01 to 0.1 (figure 2), 
in the 8 direction Ic,variedfrom 24'to 10"(i.e. 0.044-0.175) and the 7 direction hjvaried 
from a minimum of 0-036 near the surface to a maximum of 3.7 at the outer edge 
when negative crossflow was well developed and the boundary-layer thickness had 
reached 30. No attempt was made to investigate the effects of h2-extrapolation 
or other deferred approaches to the limit on the results obtained. 

The velocity profiles individually show no new general features from those reported 
by earlier authors (Wang 1974a, b,  c,  1975; Geissler 1975) and will not be discussed in 
detail here. The growth of the boundary layer in the region of crossflow reversal has 
already been noted, but in contrast to the results obtained by Cebeci et al. (1980) for the 
paraboloid (2 = 0) we find that the thicknessof that part of the boundary layer in which 
g c 0 does not increase significantly. Thus when a = 30" that part of the boundary 
layer never extended beyond 7 = 2 even though uniform conditions might not be 
achieved until 7 = 30. 

The discussion is concentrated on the principal features of the boundary layer, 
namely the skin friction and the effective blowing velocity which it induces on the 
external flow. From the equation of continuity (1) we know that v asymptotes to a 
linear function of y as y 3 m on the boundary-layer scale. Let us define 

Then the perturbation to the inviscid flow caused by the boundary layer may be 
regarded as a replacement of the condition of zero normal velocity on the body by the 
requirement that i t  be equal to v,. Equivalently, the condition that the body be a 
streamline surface is changed to the condition that the streamline surface through the 
forward stagnation point 8, is at  a distance 6* from the body, where 

(h,we6*) = hlh2vm; 
a i a  
ax a ae - (hzu, S*) + -- 

S* can be found by solving this equation with the initial condition S* = 0 at 8,. By 
reference to (34) we may connect v with e and hence after setting u, = a = v = 1 and 

(47) 

we have V, = E , d .  (48) 

The principal quantities on which we shall base our discussion of the solution pro- 
perties arepw, qw and E,, the components of the skin friction in the 5 , B  directions being 

s-tEP(5, 7, O), q(E7 r l , O ) l  = s-J(pw7 qw).  (49) 

The equivalent physical quantities may now easily be deduced on restoring the 
appropriate values of urn, a, v. 

In presenting the results, we shall pay closest attention to the solutions for a: = 6" 
and for a = 30", the first because the ok is well developed yet a largely complete 
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FIGURE 5. Variation around the circumference of the body for different E-values of (a) the 
longitudinal component of wall shear p,,  ( b )  the transverse component of wall shear qw, and 
(c) the normal velocity parameter E ,  ; a = 6". 

solution can be found, and the second because the ok has penetrated almost to the nose 
(5 = - 0-83) and furthermore the accessibility boundary lA differs most clearly from 
1, on the lee side. The next significant stage in the development of lA with increasing 
a occurs at a 21 42O, where 1, joins up with an incipient nose separation and the whole 
of the lee side of 1, becomes inaccessible. Careful studies of the boundary layer have 
been made in this situation by Wang (1 974 b) and we see no reason to repeat them. 

In figures 5 , 6  we show the variation ofp,, q,, E, over most of the accessible region, 
lying upstream of 1,. Perhaps the most interesting result is that Em < 0 over a signifi- 
cant part of the region of negative crossflow. Thus the commonly held view that bound- 
ary layers under adverse pressure gradients act as injection sources with respect to the 
external flow is seen not to be universally correct and fails, in particular, near the lee- 
side line of symmetry 1 when the pressure gradient is as we have prescribed. It does 
not necessarily follow of course that S* < 0 in this region, but we note that for the 
paraboloid (t = 0) discussed by Cebeci et al. (1980) the value of S* tends exponentially 
to -a at infinite distances downstream from the nose according to the asymptotic 
formula derived there. The negative values of Em may be inferred from Wang's studies 
( 1 9 7 4 ~ )  when it is borne in mind that in his notation 



74 

0.8 

0.6 

P w  

0.4 

0.2 

0 

1.5 

1 .o 

4 w  0.5 

0 

-0.5 

T .  Cebeci, A .  K .  Khattab and K .  Stewartson 

t 

- 
& = -0.7 

- 
& = -0.7 

- 

I t 1 I -04 I 1 
30 60 90 120 150 180 

e 

t = -0.7 

= -0.8 

& = -0.7 

FIQ~RE 6(a,  b ) .  For legend see facing page. 



Three-dimensional laminar boundary layers 

1 

76 

1 
180 

25 

20 

15 

1c 

E,  5 

t 

5 

I (  

1: 

I /i 
I 

120 30 60 90 

FIUURE 6. As for figure 5 but for a = 30". 

The principal interest in the plots of the skin-friction lines is in the location of 1, and 
its nature. The location of the line of zero crossflow skin friction is shown in figure 7 
for the various values of a. Good agreement is obtained with the specific results of 
Geissler (1975) at a = 15" and of Pate1 & Choi (1979) at a = 6" but there are significant 
differences with Wang's (e.g. 1975) data. 

In  figure 7 we also plot our best estimates of the separation lines 1, for the same values 
of a. The principal properties of the solution near 1, are discussed in detail in the next 
two sections: broadly on the windward side its shape is deduced by a combination 
of numerical analytic arguments but on the lee side it is essentially determined by the 
failure of the numerical scheme as 0 decreases. In  addition we have superposed on these 
diagrams the external streamlines and we see that a t  a = 15"' 30" and on the leeside 1,  
they are pointing into the region of computation. In  accordance with Raetz's notion 
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FIGURE 7. External streamlines, zero-c,o lines and separation lines. 

(a) a = 3"; ( b )  a = 6";  (c )  a = 15"; ( d )  a = 30". 

of zones of influence, it follows that the solution in part of this region cannot be com- 
pleted with the information supplied in this paper. For information is also necessary 
from the separated region downstream of 1, which we are unable to compute. Thus, the 
definition of separation as the limit of the accessible region from the nose is not 
apparently compatible with its being either a limiting streamline or an envelope of 
streamlines. We shall return to this point below. 

5. The separation line when a = 6" 

An important goal of our numerical studies is to clarify further the nature of the 
separation line 1,. For this reason particular attention was paid to the properties of the 
solution in its neighbourhood when a = 6". The conclusions we are able to come to for 
this special angle of incidence may then be used to comment on the nature of 1, for 
other values of a. There is no doubt that when 1, intersects either the windward line of 
symmetry 1, (at 6 2: 0.84) or the leeward line of symmetry 1 (at E N 0-72), the solution 
develops a singularity of the Goldstein type (Goldstein 1948; Brown 1965). We may 
also expect (Buckmaster 1972) that a t  these points 1,is perpendicular to 1,' 1 and further 
that in their neighbourhoods it coincides with the accessibility boundary lA. 

There are several conflicting views about the flow properties at general points of 1,. 
Let us suppose first of all that 1, is a continuous curve joining (&0) = (0.84,O) to 
(0.72,n) but is not necessarily monotonic in 6, 0 .  Thus we postpone discussion of 
Wang's (1976a) concept of open separation until later. Then there has been general 
support for Hayes' (1951) concept of 1,' or strictly, the normals to the surface through 
1,' as a bound of those points for which the boundary layer can be computed starting 
from the forward stagnation point and making use only of conditions at 7 = 0 and 
as 7 -+ 00. Beyond this bound the solution depends in some way on conditions furt*her 
downstream and particularly a t  the rear stagnation point. We concur with the notion 
that our forward integration procedure cannot continue the solution beyond 1, but we 
have strong reservations about the implication that it may be continued as far  as 
1, in all cases. When a < 6", however, the identification of 1, and 1, is in our view 
largely complete. 
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The main controversy about 1, in the literature centres on whether it is an envelope 
of limiting streamlines, i.e. skin-friction lines (Eichelbrenner and Oudart 1954; Eichel- 
brenner 1973; Maskell 1955) or is itself a limiting streamline (Lighthill 1963). The 
distinction is not academic. In  fact it is of crucial importance in the study of practical 
boundary layers, whether laminar or turbulent, because if the first view is correct then, 
unless special preventive measures are taken, a singularity must develop in the solution 
at all points of 1,. In this event the slope of the displacement surface also becomes 
infinite at 1, and the boundary layer exerts a serious modifying influence on the 
mainstream. Thus the hierarchical method of studying high-Reynolds-number flows 
fails, just as it does in two dimensions. Experimentally inspired statements about 1, 
are therefore not germane to the question for in a practical flow the solution must be 
regular and Lighthill’s notion of its being a limiting streamline is correct. However, 
it  is at present virtually impossible to prescribe the correct pressure gradient and, if it 
turns out that a general pressure gradient leads to a singularity, there are important 
consequences. For example, a general interaction theory of the kind investigated by 
Smith (1977a,b, 1979) will almost certainly be necessary to treat the solution in the 
neighbourhood of 1,. 

We can see how the singularity must develop a t  l,, if it is an envelope of limiting 
streamlines, as follows. Suppose that 1, is given by E = !& for all 8 and near E = 6, 
the two components of skin friction are 

76 = (g , -E )p ,  7 8  = 1, /3 > 0. 

Then the limiting streamlines are the curves 

1 e = el-- 1 - p (5, - El‘-”, 

where O1 is a parametric constant. Thus if /3 < 1 these curves touch 1, at 8 = el, whereas 
if /3 = 1 (corresponding to a regular solution) they meet it at  8 = a. 

After careful examination of the numerical data near the termination of our 
calculations, we obtained strong but not totally convincing evidence that the sepa- 
ration line is an envelope and we are led to make the hypothesis that this property holds 
over the whole of its accessible length. The notion is, however, not without its 
difficulties, especially on the leeward side. 

Let us begin by looking at the calculations in the neighbourhood of 1, on the wind- 
ward side, i.e. for 8 c 110” (figure 7 b). As explained in § 3, when we integrate the 
equations a t  a given value of 5 for increasing values of 0 starting from I,, where B = 0, 
our procedure is to use the standard box until the crossflow velocity w( = g )  changes 
sign. Then we switch either to the zigzag box or, more usually, to the characteristic 
box, both of which take into account to an increasing degree the fact that information 
is being fed to the new (&0) station from larger as well as smaller values of 8. As 8 
increases further, a stage is reached when neither of these boxes can be used through 
lack of information from the next 8 station at  the previous 5 station (the points 
(i - 1, j, m + 1) in figure 3 b )  or becausep becomes negative or because the iterations fail 
to converge. In the first eventuality the standard box is used for one further 0 station 
and the calculations at  this E station are terminated. This procedure is rather crude 
and it is desirable for a full understanding of the separation singularity that a superior 
way of overcoming the difficulty be found. 
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e o  

42.5" 
45O 
47.5" 
50" 
52.6" 
56" 
57.5" 
60" 

PW 

0.413 
0.394 
0.369 
0.343 
0.313 
0.279 
0.233 
0.104 

P w  

+ 0.002 
- 0.005 
- 0.014 
- 0.024 
- 0.035 
- 0.049 
- 0.066 
- 0.098 

E m  

2.09 1 
2.412 
2.857 
3.468 
4.254 
5.415 
7.692 

16.94 

( P w  + # P W ) ¶  

0.172 
0.154 
0.136 
0.118 
0.091 
0.069 
0.04 5 
0.005 

4 P w  - Qtu 

0.136 
0.136 
0.137 
0.139 
0.139 
0.140 
0.144 
0.133 

E,P 

0.229 
0.172 
0.123 
0.083 
0.055 
0.034 
0.01 6 
0.003 

TABLE 1. Computed values of pw,  qw, E ,  at 6 = 0-7, a = 6". The 0 step length in radians is 
k, = 0.0437 and the values of E ,  were actually calculated at midway stations in both 6 and 8. 

A set of values of pw, qw, E, is displayed in table 1; they correspond to a represent- 
ative value 0.7 of l and values of 8 near the termination of the calculations. This 
occurred at 8 = Qn (=  60") owing to the lack of any information about the solution 
at  6 = 0.69 and 8 = 62.5") since the wall shear parameter pw became negative a t  
that station after only two iterations, causing the iterations to diverge. From this 
data we infer that the separation line passes close by (0.7, +n) and that the solution 
is not smooth there. 

We now test the hypothesis that the separation line is an envelope of limiting 
streamlines. On this assumption, Brown (1965) has studied the nature of the solution 
near separation and her conclusions may be interpreted in the present context as 
follows: Let (6,) 0,) be a point P, on the separation line I,, which makes an angle 0, 
with the E direction. At P, the component 7, of the skin friction along the direction of 
1, is finite while the normal component 7, vanishes. Her theory predicts that at  a point 
Q on the normal to 1, through P, 

7, = A,+B,(QP,)*+ ... when Q P , <  1, (53a)  

while 7, = C,(&P,)) + . , . when QP, < 1,  ( 5 3 b )  

where A,, B,, C, are numbers with C, > 0. We now tabulate pw-tanOq, and 
pw tan 0 + qw as functions of 0 for various 0. These functions are not quite the T,, 7, 

of (53) since the 0 direction is not normal to l,, but these differences are not thought to 
be significant. The final value of 0 chosen must be consistent with the predictions of 
the separation point at  6 = 0.70 and at neighbouring values of 6.  We conclude that 
the best value of tan 0 2: - 5, corresponding to 0, = - 19" and display in table 1 the 
values of ( p ,  + )qw)2 and of +pw - qw. It is seen that (pw + +qw)z is roughly linear, in 
agreement with (l) ,  except very near 8 = 60°, and we infer that separation occurs a t  
0, = 60.5". A more cautious conclusion is that (pw + #qw) - (0,- 0),, where Q < n < 4 
as 0 +- 0, - , but, in view of the complexity of the numerical program, the slight 
irregularity visible in the data of table 1 and the difficulty in reproducing singularities 
by numerical integration, we are broadly satisfied that these results are consistent 
with Brown's theory. The function &pw - qw is almost constant except close to 0 = 60", 
where the second term in (53a)  might be important, but it is more likely that the 
program is not adequate for predicting this term. Finally we display Eg2, which should 
be linear in 0 with a zero at 0 = 0,. This is reasonably the case except near 8 = 0,, but 
the predicted value of 0, from this set of values in table 1 is approximately 59", rather 
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FIGURE 8. The variation of the tangential component of the reduced skin friction 

( = p,,, cos 0, - q,,, sin 0,) on 1, for a = Go. 

less than that predicted from p,, q,, especially when it is borne in mind that E, is 
tabulated for 5 = 0.695. 

After repeating these arguments at  all the E stations on the windward side we are 
able to determine 1, from E = 0.31, where 0, = 113", to 6 + 0.83, where 8, = 0, and 
confirm that its shape is consistent with the choice of 0 in tables similar to table 1. We 
conclude that on the windward side 1, is indeed an envelope of limiting streamlines and 
that the skin friction 7, on it ( = pw sin 0 - qw cos 0) varies from = 0.13 at 6 = 0.31 to 
a maximum + 0.15 at 5 = 0.6, decreasing afterwards to zero when 1, intersects the 
windward line of symmetry. The shape of the separation line is shown in figure 7 (b) and 
the variation of 7, along it in figure 8. Along I,, 1, is perpendicular to 1, in agreement 
with Buckmaster's (1972) theory of the structure of the separation line in this 
neighbourhood. 

On the leeward side the situation is much more difficult to interpret with confidence. 
First of all, in the integration from 0 = n no separation is observed for 6 c 0.35, even 
though from the windward side it occurs at  6 = 0.31 and when 0.31 < 6 c 0.35 the two 
integrations give results closely in agreement for 8 < 100". If separation does occur, 
it  is very weak and may have been missed in the numerical calculation from 1 because, 
even with the use of the characteristic box, there is aslight lossof precisioninintegrating 
against the cross-stream direction outside the boundary layer, especially as g > 0 for 
all 8 when T,I > 3 and 6 < 0.35. The first onset of separation, a t  E = 0.35, occurs when 
8 c l l O o ,  which is less than the value of 8, at  6 = 0.31 according to the calculation 
from the windward side. We believe that the discrepancy between the windward and 
leeward integrations is largely the fault of the latter and that, bearing in mind the very 
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0 P w  9 w  E m  
165' 0.156 -0.120 - 6.94 
162.5' 0.154 -0.139 - 6.84 
160" 0.151 - 0.158 - 6.76 
157.5' 0.148 - 0.176 - 6.67 
155' 0.146 -0.193 - 8-52 
159.5' 0.144 - 0.210 - 8-36 
150" 0.121 - 0.226 - 6.08 
147.8' 0.120 -0.215 - 4.99 

TABLE 2. Computed values of p,, qlC, Em at E = 0.6, a = 6'. The step length in radians is 
k, = 0.0437 and the values of Em are actually calculated at midway stations in both 5 and 0. 

FIGURE 9. Two optional limiting streamline patterns near the leeside part of 2,. 

sharp peak in Em a t  5 = 0.30 (see figure Sc), separation occurs first close to (0.31, 
113O). 

For 6 2 0.35 the integration from 8 = n breaks down at values of 8 3 110' in a curious 
way. As 8 decreases pw decreases slowly, qw increases more rapidly and Em remains 
almost constant. As the calculat,ions draw to an end pw begins to fall more rapidly 
towards negative values, sometimes sharply, and the integration then terminates 
either by a failure to converge or a lack of information from the previous 5 station, 
even within the requirements of the standard box. These causes of failure occurred 
roughly in the ratio 2:3, respectively. We give a set of results in table 2 for 5 = 0.6 
typical of the situation where termination occurs through lack of the necessary data. 
The sudden onset of breakdown makes unprofitable a study of the solution properties 
near 1, of a similar kind to that just carried out for the windward side. It is clear that 
something unusual is happening, but Brown's theory is of little direct help. 

Let us suppose that 1, is here also an envelope of limiting streamlines -the other 
possibility that it is itself a limiting streamline, seems excluded by the breakdown of 
the iterative process a t  the final value of 8. Then either the limiting streamlines turn 
upwards before touching l,, as in figure 9 (a),  or turn back, as in figure 9 (b). The first 
alternative seems unlikely from the available data since q, shows no signs of be- 
coming positive. The second requires pw to change sign, which is more consistent with 
the data as the final computed value ofp, is often less than half its value near 8 = n. 
It also agrees with the Buckmaster theory, which applies when 1, intersects 1. 

If the Brown structure holds very near to l,, the skin friction 7, along 1, is closely 
given by the last reasonable values ofp,, qw and the slope of 1, may be inferred from the 
line of breakdown of solutions. We can also estimate the variation of 7, over the range 
0.35 < 6 < 0.71 on the leeward side; it is displayed in figure 8. The position of 1, may 
be inferred as well within an accuracy of about 1'. A necessary requirement for 
obtaining the solution right up to 1, is that the local streamlines on the normals to the 
surface t.hrough 1, are all directed out, of the region of integration. The most likely 
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( C )  

FIGURE 10. Three optional limiting streamline patterns near the ok. 

streamlines to violate this requirement are those external to the boundary layer, but 
when a = 6" our estimate for 1, does not lead to a contradiction due to this cause 
except near the ok. The external streamlines are also indicated in figure 7 (b )  and are 
pointing out of the computed region at  the estimated position of 1,. We infer that for 
a = 6' the boundary of the region accessible from the forward stagnation point is 
largely defined by the position of 1,. 

For the shape of 1, near the ok at f ;  = 0.31 three possibilities were considered and are 
shown in figure 10. Our preference is figure lO(a) and, if we are right, the complicated 
structures of the limiting streamlines near the ok makes their computation very 
difficult. Some comments are in order about ( b )  and (c). The option ( b )  is inspired by 
the notion of 'open separation' which Wang (1974b) introduced in his study of the 
solution when a = 30' and, if it occurs, it implies that 7, vanishes at some point of 1,. 
The option (c) is a weak boundary-layer collision (shown by the dotted line) and would 
be identified in our calculations by a separation line overlap when computed from 1 and 
1, for fixed f;. It has been found in boundary-layer studies on rotating spheres (Banks 
1976) and also in the entrance region of a curved duct (Stewartsonet al. 1980) where it is 
preceded by a singularity in the displacement thickness. Our calculations (figure 5c)  
indicate a singularity in E,  is very close to (0-30, 113"), but they are not as smooth in 
this neighbourhood as we should like and a clarification of the structure might well 
follow from a refinement in our numerical work. 

6. The separation lines for a = 3", 15", 30' 

When a = 3" the first signs of irregularity are the rapidly increasing values of E, 
for 8 z 105" as E approaches 0.575. The windward integration breaks down at (0.575, 
110") with pw rapidly approaching zero as this point is reached. The leeside computa- 
tion may be continued to 6 = 0" at f ;  = 0.575 but the maximum value of E, is 11 
at 8 = loo", suggesting that separation is near. At f ;  = 0.60 the leeside computation 
breaks down at  6 = 120" and at  E = 0-625 no solution can be obtained since separation 
has already occurred at 6 = 180". The windward calculations behave similarly to those 
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for a = 6". We infer that 1, is closed, and the normals through it very largely, if not 
entirely, define the accessibility limit l d .  It is noted that the general shape of 1, was 
forecast by Wang (1976). 

When a = 15" the first sign of difficulty in the numerical computation occurs at 
5 = - 0.475 when an irregularity develops in the windward integration at 8 = 135"; in 
addition Ern(& 135') reaches a value of 14 at  this point, which suggests that separation 
is near. Breakdown first occurs at  ( - 0.425,135") in the windward calculation because 
p ,  becomes negative, while the leeside calculation at  5 = - 0.475 may be continued 
to 1,. At 5 = - 0.400 the integrations in both directions break down, at  130" and 135", 
the leeside because the iterations exceed the maximum allowed. For - 0.4 < 5 < - 0.1 
the leeside computations come to an end at 8 = 140", and a t  6 = - 0.1 the solution a t  
0 = 140"becomes unacceptable because IqI > 0.1 a t  the outer edge oft'he boundarylayer 
in adramatic fashion, no such phenomenon being observed at 8 = 145". Thereafter the 
lower limit of Oslowlyincreases with 5 reaching 165" at 5 = 0.2. The physicalexplan- 
ation is that the integration at  the lower limit of 8 should make use of information 
from smaller values of 8 in the outer part of the boundary layer and cannot do so 
because this information has to come over the separated region. From figure 7 (c) we 
infer that  the true lower limit of 8 defining the accessible region is almost certainly 
given by the external streamline from the ok, and the position of 1, on the leeward side 
is irrelevant to the computations. The computations were arbitrarily terminated at 
5 = 0-200; although the boundary layer is thick ( -  18) there is no new fundamental 
reason why they cannot be continued. 

On the windward side there are no new features of the solution that need special 
comment; it  is interesting that 1, nearly coincides with the line of zero q,. The ok 
region of 1, is difficult to be definite about, there being again the three possibilities of 
figure 10 to consider. In this case also our inclination is to favour figure 10 (a) ,  that I ,  is 
closed in this neighbourhood, but the evidence is very weak. Wang (1976) favours open 
separation at  a = 30" over a substantial proportion if not all of the leeward part of 1,. 
In our view the notion of inaccessibility pre-empts a definite decision on this question. 

When a = 30", the first sign of difficulty occurs a t  ( - 0.85, 155") when Ern reaches a 
peak of about 19 suggesting that separation is near. From the windward side break- 
down first occurs a t  5 = - 0.83 and 8 = 140', wherep, < 0. On the lee side breakdown 
also occurs a t  6 = - 0.83 but at 8 = 146"; these points are sufficiently close together, 
one may reasonably conclude that they really coincide. Continuing with the leeside 
solution the ok shows some indication of being similar to that when a = 6" and then 
the breakdown value of 0 slowly increases with 8 reaching 156' at 5 = - 0.74, a t  which 
point IqI > 0.1 at the outer edge of the boundary layer. As when a = 15", the reason is 
that the boundary of the accessible region from stagnation is probably upstream of 1,. 
We note that the breakdown in the solution for -0.83 c 5 < -0.74 on the lee side 
cannot be directly associated with 1, and also happens to occur at points practically 
coincident with the external streamline through the ok. The positions of this external 
streamline of 1, on the windward side, and of the breakdown curve on the leeward side, 
are displayed in figure 7 (d )  to demonstrate this property. On the windward side the 
behavionr of 1, is similar to that for other values of a and we shall not comment on it. 
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7. Discussion 
The generalization of the Keller-box method of solving parabolic differential 

equations, to take account of the varying direction of the local streamlines from that 
of the limiting streamline at the body to the external streamline including any over- 
shoots, by the concept of the characteristic box has enabled us to continue accurate 
solutions of the boundary-layer equations further than has been possible hitherto. In  
fact we believe that the method can be used virtually up to I, ,  the boundary of the 
accessible region from 0. 

At zero incidence 1, and 1, are coincident circles defined by 5 N 0-79 (Wang 1970). 
A t  a = 3" the two are still coincident but are no longer circles (figure 7a), being moved 
forward on the lee side to 5 2: 0.60 (i.e. for 0 > 100") and curving back to 5 N 0.76 at 
0 = 0. A large region of weak reversed circumferential flow develops extending almost 
to 5 = 0 near 1. There is little sign of an ok developing at  this stage, but when a reaches 
6" it is quite pronounced, extending back to 6 = 0.31 at 8 = 110". There is some 
uncertainty a t  the tip of the ok but elsewhere we are confident that the separation line 
defines the limit lA of the region of accessibility since the streamlines on the normals 
to 1, either touch this surface or are directed out of it, i.e. away from 0. The region of 
crossflow reversal extends further towards the nose and the phenomenon becomes 
stronger, so that the characteristic box is essential if the whole region upstream of 1, is 
to be computed. On the windward side crossflow reversal is soon followed by separation 
and a careful study of the nature of the solution near 1, supports the view that it is 
singular a t  1, as described by Brown. This irregularity is best seen in the behaviour of 
E, (figure 5 c )  which is clearly infinite at  separation. On the leeward side the structure 
is more obscure but the limiting streamlines appear to have to turn until they are 
almost pointing in the opposite direction to those of external streamlines above them. 
The structure of the neighbourhood of the ok is very uncertain but what evidence 
there is suggests that 1, is smooth and continuous there. At the ok the direction 
of the external streamline is unfavourable on the leeward side and so according to 
figure 7 ( b )  there may well be a small length of 1, not coincident with 1,. The correspond- 
ing part of 1, cannot then be found. 

At a = 15" and 30" the windward part of 1, is very close to  the crossflow reversal 
but there seems little doubt that 1, is an envelope of limiting streamlines, the most 
convincing evidence coming from the behaviour of E,. The singularity in E, is 
strongest at the tip of the ok and on the leeward side the solution breaks down almost 
exactly on the external streamline through this point. No difficulty at  all is experienced 
in integrating the equations from 1 provided the characteristic box is used, so long as 
we are upstream of this line. Here, however, and quite suddenly, convergence ofp, q is 
lost a t  the outer edge of the boundary layer as would be expected since the corre- 
sponding external streamline is carrying the data of its numerical singularity at the 
ok with it. Thus the limit 1, of the accessible region on the leeward side is not provided 
by 1, but by the external streamline through the ok. Not only have we failed to compute 
the leeward side of 1, but we may firmly state that it is unmputable - and indeed has 
no meaning for the problem originally posed. 

Previously several authors, notably Wang (1974a, b,  c )  and Geissler (1975) have 
attempted to compute the flow pattern in a region of moderate or strong crossflow 
reversals but all have soon experienced considerable difficulties due to deficiencies in 



Three-dimensional laminar boundary layers 85 

their computational procedure. Wang’s calculations are probably the most successful 
but for a = 30°, b/a = t he is hardly able to proceed pa& = - 0.88 for 8 2 150°, the 
line of zero crossflow crossing 1 at 6 21 0.92. Using his knowledge of the experimental 
information about the laminar boundary layer on a prolate spheroid, Wang infers that 
the lee side of 1, coincides with the windward side of 1, at least as far as E = - 0.4 and 
that this is an example of open separation. Our studies show that such a claim is not 
legitimate for it is quite impossible to integrate the equations on the leeward side far 
enough towards the windward side to reach 1,. The concept of ‘open’ separation has no 
place whatsoever in the theory of three-dimensional boundary layers on prolate 
spheroids when the pressure gradient is prescribed, once it is found a singularity occurs 
at  the ok of accessibility. 

There are cogent reasons for believing that open separation is an important feature 
of experiments on flow past thin spheroids a t  high Reynolds number. In  addition to 
that adduced by Wang, further evidence may be seen in the beautiful experiments 
recently reported by Han & Pate1 (1979). However in all these examples the external 
velocity field is not determined by inviscid arguments only but also involves a subtle 
interplay with the boundary layer. An immediate consequence is that the singularity 
a t  1, on the windward side is prevented and from that it follows that 1, cannot be an 
envelope of limiting streamlines. Thus for a real flow Lighthill’s (1963) concept of 1, 
as a limiting streamline is relevant. Integration of the equations across 1, may well be 
possible and if it is an example of open separation we should be able to continue all 
the way to 2 (0 = 180O). On the other hand if 1, is closed, a good approximate result 
might well be obtained if a variation of Reyhner & Flugge-Lotz’s (1968) approach 
were used. If a more accurate answer were required, there are methods in two dimen- 
sions available for making use of downstream conditions (Williams 1975; Cebeci, 
Keller & Williams 1979) which seem capable of generalization. 

This work was supported by Mr W. C. Volz of Naval Air Systems command under 
Contract N6092 1 -78-C-0 158. 

REFERENCES 

BANKS, W. H. H. 1976 Thelaminar boundary layer on amtatingsphere. Acta Mech. 24,273-287. 
BROWN, S .  N. 1965 Singularitiee associated with separating boundary layers. Phil.  Trans.  Roy. 

BUCKMASTER, J. 1972 Perturbation techniques for the study of three-dimensional separation. 
Phye. Fluida 15, 2106-2173. 

CEBECI, T .  1979 The laminar boundary layer on a circular cylinder started impulsively from 
rest. J .  Comp. Phye. 31, 153-172. 

CEBECI, T .  & BRADSKAW, P. 1977 Mornexturn Tranafer i n  Boundary Luyera. McGraw-Hill/ 
Hemisphere. 

CEBECI, T., CHANO, K. C. & &UPS, K. 1978 A general method for calculating three-dimensional 
laminar and turbulent boundary layers on ehips hulls. Proc. 12th Symp.  on Naval Hydro- 
dynamics, Waahington, pp. 188-208. 

CEBECI, T., HIRSH, R. S. & =UPS, K. 1976 Calculation of three dimensional boundary layers on 
bodies of revolution at incidence. Dough Aircraft Co., Long Beach, Rep. MDC 57643. 

CEBECI, T., I ~ U P S ,  K., MOSINSKIS, G. J. & REHN, J. A. 1973 Some problems of the calculation 
of three-dimensional boundary-layer flows on general configurations. N.A.S.A.  CR-2285. 

CEBECI, T., KELLER, H. B. & WILLIAMS, P. G. 1979 Separating boundary-lager flow calcula- 
tions. J .  Comp. Pliys. 31, 303-378. 

soc.  A 257,409-444. 



86 T .  Cebeci, A .  K .  Khattab and K .  Stewartson 

CEBECI, T., KHATTAB, A. K. & STEWARTSON, K. 1980 On nose separation. J. Fluid Mech. 97, 

EICHELBRENNER, E. A. 1973 Three-dimensional boundary layers. Ann. Rev. Fluid Mech. 5 ,  

EICHELBRENNER, E. A. & OUDART, A. 1955 Methode de calcul de la couche limite tridimen- 
sionnelle, application 8, un corps fuse16 incline s u p  le vent. ONERA Publication 76. Paris, 
France. 

GEISSLER, W. 1975 Calculation of the three-dimensional laminar boundary layer around bodies 
of revolution a t  incidence and with separation. AOARD CP-168. 

GOLDSTEIN, S. 1948 On boundary-layer flow near a position of separation. Quart. J. Mech. 
Appl. Math. 1, 43-69. 

HAN, T. & PATEL, V. C. 1979 Flow separation on a spheroid a t  incidence. J. Fluid Mech. 92, 

HAYES, W. D. 1951 The three-dimensional boundary layer. U.S. Nav. Ord. Lab. Rep. no. 1313. 
HIRSH, R. S. & CEBECI, T. 1977 Calculation of three-dimensional boundary layers with negative 

HOWARTH, L. 1951a Note on the boundary layer on a rotating sphere. Phil. Mag. 42(7), 

HOWARTH, L. 1951b The boundary layer in three-dimensional flow, Part 11: The flow near a 
stagnation point. Phil. Mag. 42 (7), 1433-1440. 

KRAUSE, E., HIRSCHEL, E. H. & BOTHMANN, TH. 1968 Die numerische Integration der 
Bewegungs-Gleichungen dreidimensionalen laminaren kompressiblen Grenzschichten. Band 
3, FACHTAGUNG Aerodynamik, Berlin; DGLR-Fachlinchreike. 

LIGHTHILL, M. J. 1963 In Laminar Boundary Layers (ed. L. Rosenhead) cha. 2, p. 79. Oxford 
University Press. 

MASKELL, E. C. 1955 Flow separation in three dimensions. Royal Aircraft Establishment, Bedford, 
England, Rep. Aero 2565. 

MEIER, H. U. & KREPLIN, H. P. Experimental investigation of the transition and 
separation phenomena on a body of revolution. 2nd Symp. Turbulent Shear Flow, Londoti, 
p. 15.1. 

PATEL, V. C. & CHOI, W. 1979 Calculation of three-dimensional and turbulent boundary layers 
on bodies of revolution at incidence. 2nd Symp. Turbulent Shear Flow, London, p. 15.3. 

RAETZ, G. S. 1957 A method of calculating three-dimensional laminar boundary layers of 
steady compressible flows. Northrop Corp. Rep. no. NAI 58-73. 

REYHNER, T.A. & FLUGGE-LOTZ, I. 1968 The interaction of a shock-wave with a laminar 
boundary layer. Int. J. Nonlinear Mech. 3 ,  173-199. 

SMITH, F. T. 1977a The laminar separation of an incompressible fluid streaming past a smooth 
surface. Proc. Roy. SOC. A 356, 443-464. 

SMITH, F. T. 1977 b Behaviour of a vortex sheet separating from a smooth surface. RAE Tech. 
Rep. TR 77058. 

SMITH, F. T. 1979 Laminar flow of an incompressible fluid past a blunt body; the separation, 
reattachment, eddy properties and drag. J. Fluid Mech. 92, 171-205. 

SMITH, F. T., SYKES, R. I. & BRIUHTON, P. W. M. 1977 A two-dimensional boundary layer 
encountering a three-dimensional hump. J. Fluid Mech. 83, 163-176. 

STEWARTSON, K., CEBECI, T. & CHANG, K. C. 1980 A boundary-layer collision in a curved duct. 
Quart. J. Mech. Appl. Math. 33, 59-74. 

SYCHEV, V. YA. 1967 On laminar flow behind a blunt body at  high Reynolds numbers. Rep. to 
8th Symp. on Recent Problem in Mech. Liquids and Gases, Tardo, Poland. 

SYCHEV, V. YA. 1972 Concerning laminar separation. Izv. A M .  Nauk S.S.S.R. Mekh. 2h.i 
Oaza 3, 47. 

SYKES, R. I. 1980 On three-dimensional boundary -layer flow over surface irregularities. Proc. 

WANG, K. C. 1970 Three-dimensional boundary layer near the plane of symmetry of a spheroid 

435-454. 

339-360. 

643-657. 

cross-flow on bodies of revolution. AIAA Paper 77-683. 

1308- 13 15. 

1979 

Roy. SOC. A 373, 311-329. 

at incidence. J. Fluid Mech. 43, 187-209. 



Three-dimensional laminar boundary layers 87 

WANQ, K .  C. 1972 Separation patterns of boundary layer over an inclined body of revolution. 
A.I.A.A. J. 10, 1044-1050. 

WANQ, K. C. 1974a Boundary layer over a blunt body at high incidence with an open-type of 
separation. Proc. Roy. SOC. A 340, 33-55. 

WANQ, K. C. 19746 Laminar boundary layer near the symmetry-plane of a prolate spheroid. 
A.I.A.A. J. 12, 949-958. 

WANQ, K. C. 1974c Boundary layer over a blunt body at extremely high incidence. Phys. Fluids 

WANQ, K .  C. 1975 Boundary layer over a blunt body at low incidence with circumferential 
reversed flow. J. Fluid Mech. 72, 49-65. 

WANQ, K. C. 1976 Separation of three-dimensional flow. In  Viscous Flow Symp. Lockheed 
Georgia Co., Atlanta, Georgia. 

WILLIAMS, P. G. 1975 A reversed-flow computation in the theory of self-induced separation. 
Proc. 4th Int. Conf. on Numerical Methods in Fluid Dynamics (ed. R. D. Richtmyer). 
Lecture Notes in Physics, vol. 35, p. 445-451. Springer. 

17, 1381-1385. 


